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Abstract-A numerical method for the analysis of elastoplastic planar frames is developed on the
basis of a minimum principle in finite increments of stresses and plastic factors. Local elastic
unloading and plastic admissibility of final stresses are considered in this theoretical formulation,
avoiding additional iterative procedures. Since all possible stress distributions can be represented
exactly, only an interpolation of plastic multiplier fields is required to transform the formulation in
the functional space into a problem with a finite number of variables. Plastic admissibility for any
section along a beam element is substituted by a finite number of contraints. The interpretation of
this approximation is used to choose appropriate interpolation bases. The resulting discrete version
of the principle is a quadratic optimization problem solved in this work by dualization, condensation
to a problem in plastic factors only, and application of Lemke's algorithm, The advantages of the
force method when compared with kinematical approaches for planar frames are discussed and
demonstrated by examples.

I. INTRODUCTION

The evolution of stresses and deformations in an elastoplastic structure under a loading
process can be analyzed by solving a sequence of discrete problems that are generated by
means of optimization concepts[I-3], instead of the frequently used sequence of Newton
iteration schemes, The loading process is divided into finite steps and statical or kinematical
minimum principles are stated in terms of fields of finite increments of displacements,
stresses and plastic multipliers, These formulations in finite increments are approximate
because yielding followed by local elastic unloading cannot be obtained in a single load
step, However, local elastic unloading starting at the beginning of the step, equilibrium and
plastic admissibility of final stresses, are all taken into account by the extremum principle,
Then, exact equilibrium and plastic admissibility are ensured, for piecewise linear plastic
relations, without any additional iterative procedure.

In planar frames all possible stress distributions in equilibrium with a given load can
be represented as a linear combination of known fields with a finite number of variable
coefficients. Consequently, a statical formulation should be preferred because the exact
expression of stresses can be used to discretize the problem.

The aim of this work is to show that the simplest discrete version of the statical
formulation is obtained when the plastic admissibility constraint is approximated by aver
aging the plastic function with the same functions used as interpolation basis for plastic
multipliers. The resulting numerical method does not introduce fictitious redundancy in the
element, a phenomenon frequently experienced when the kinematical approach is adopted,

Some interpolation functions for plastic multipliers are chosen by considering that they
should approximate the solution fields, which are non-negative everywhere, and properly
average plastic functions, The effectiveness of these finite elements is demonstrated by
examples.

2, KINEMATICS, EQUILIBRIUM AND CONSTITUTIVE RELATIONS

The kinematics of small deformations of a structure is described in terms of the
position vector x for points of region V, and vector u identifying generalized displacements.
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Displacement fields u, sufficiently regular and satisfying homogeneous constraints in a part
r u of the boundary r of V, constitute the field space U. Let q denote generalized strains in
a point x defined by means of the linear deformation operator fiJ

q = fiJ(u). (1)

At any stage t of the process the known loading L is specified by the body force p and
the surface tractions "C, defined on the boundary r f complementary to r u in r, so that

L(u) = rp-u dV+ r "C'u dr.
Jv Jrr

The "power" due to the load rate acting on a velocity field v is denoted by

L(v) = rp·v dV+ r i·v dr.Jv Jr,

(2)

(3)

A distribution of generalized stresses Q equilibrates a load L if the principle of virtual
work is verified

(4)

and this is written QE S(L) , with S(L) identifying the set of stress fields in equilibrium with
a fixed load L.

The material is assumed to be linear elastic with a piecewise linear yielding limit,
presenting m plastic modes, and with an associated flow rule, so that

Q= D(q-NJ.) (5)

where D is the constant elasticity tensor, N is a constant matrix with each column repre
senting a unit vector normal to the corresponding plastic mode, and J. the vector of m
plastic multiplier rates.

The history of plastic deformation is recorded in the vector it of accumulated plastic
factors, and the yielding limit is modified according to a linear strain-hardening law. Hence
the plastic function is

(6)

where superscript T denotes transpose, H is the constant hardening matrix and R is the
constant vector of initial yielding limits for plastic modes[l, 2].

Vectors <p and J. verify the following complementarity relation (where inequalities hold
for each vector component) :

(7)

The first inequality expresses plastic admissibility of stress and the second one imposes that
plastic strain rate points outward from the elastic region. The third complementarity relation
implies that no plastic strain rate is induced by a plastic mode that is inactive (<pj < 0) for
the current value of Q and it.

Whenever an active plastic mode (<pj = 0) remains active during the rate process
described by (Q, J.) the corresponding component of the vector
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is zero, and becomes negative in the case that this plastic mode is unloaded (local elastic
unloading). Then vectors 4> and i satisfy the following set of conditions:

for cP j = 0: i j ~ 0 4> j ::;;, 0 i j4> j = 0

for cP j < 0: i j = O.
(9)

3. KINEMATICAL AND STATICAL FORMULATIONS FOR FINITE INCREMENTS

The incremental elastoplastic problem is stated at an instant t when the actual values
of the fields of displacements, stresses and plastic multipliers are assumed to be known.

Besides the classical Greenberg principle there exists a kinematical rate formulation in
two fields proposed by Capurso and Maier[I-3]

where

m~n 1t(V, i)
VE U.A.EA~

(10)

and A", is the set of non-negative fields i having value zero in any point of the structure
where cP is strictly negative (elastic).

With the less restrictive assumption that i varies in the set A of non-negative fields,
the following rate formulation can be stated[3] :

where

min 1ta (v, i)
VE u..iEA

(11)

and cPt is the known value of the plastic function at the considered stage of the process. The
functional1ta depends on the fixed small positive parameter a. The solution (va, ia) of this
optimization problem converges, for a ~ 0+, to the solution (u, i) of the rate elastoplastic
problem.

When a finite increment of load

(12)

is considered, it is convenient to use a variational formulation in terms of finite increments
of field values

(13)

This principle should be able to produce approximations of exact increments satisfying
equilibrium and plastic admissibility of stresses at the end of the load step.

A formulation that fulfils the above mentioned condition can be derived from the
second rate principle (11), setting a = tJ.t and substituting in 1ta the Euler approximations
u= tJ.u/tJ.t and tJ.i = tJ.)../tJ.t. The resulting principle is stated below
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where
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min 7tA (Au, AA)
Au€U,A)'€A

(14)

7tA(Au,AA) =1HD2#(Au)' 2#(Au)-NTD2#(Au)' AA

+1(H+NT DN)AA' AA-<!>r' AA] dV-AL(Au).

This kinematical extremum principle gives the exact solution of the elastoplastic prob
lem if the actual finite step process does not include at any point of the body a plastic
deformation followed by local elastic unloading. However, a process presenting local elastic
unloading at the beginning of the step is correctly represented in this formulation. This
kind of behaviour has been identified by Maier[l] as related to a fictitious incrementally
holonomic material.

The minimization of 7tA furnishes an approximation (Au, AA) to the actual increments,
This approximation is related to the final stress by

(15)

The stress field above is always strictly equilibrated by the final load, and it is plastically
admissible[3] .

A minimum principle for finite increments of statical variables, which ensures equi
librium and plastic admissibility of final stresses, can also be derived. It gives the exact
solution under the hypothesis already discussed. This principle is a dual of the kinematical
one and is written as

under the constraints

AQES(AL)

(16)

(17)

(18)

The non-negativity of AA is not enforced as a constraint in this statical approach but
it is valid for the solution as can be observed in the corresponding optimality conditions.

The above formulation is completely equivalent to the following optimization problem:

min max rOD- 1AQ'AQ+NT AQ'AA-1HAA'AA,+<!>,'AA) dV (19)
AQ 6). Jv

under the constraints

AQES(LiL)

AAEA.

(20)

(21)

The plastic admissibility constraint (18) is derived as a condition for the optimal solu
tions in this second statical problem. Notice that the positiveness of LiA must be explicitly
imposed now.

Comparing these two equivalent statical formulations we note that the former one
is easier to physically interpret. It consists of the minimization of an elastic energy
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Fig. I. Loads and generalized stresses.
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corresponding to stress increments plus a dissipative term due to increments in plastic
deformation, under equilibrium and plastic admissibility constraints for the state at the end
of the increment. On the other hand the latter formulation seems easier to discretize because
it has simpler constraints.

4. FRAME MODEL

A beam is idealized as a one-dimensional body, i.e. the coordinate x is a scalar, and
its local behaviour is described by the following generalized displacements, strains and
stresses (referred to Fig. 1) :

and the deformation operator

Q= [F M]T

(22)

(23)

(24)

(25)

where Ux and uy are longitudinal and transversal displacements,/) and K are longitudinal
and curvature deformations of the mean line, while F and M are the force and moment
resultants.

!'rom now on we change the notation for the stress and plastic factor functions to Q
and ..1., just to save the symbols Q and ..1. for the final variables, which are vectors.

The constitutive relation defined by matrices D, N, Hand R depends on additional
assumptions on the sectional behaviour. Some models for the cross-section are presented
in the Appendix or found in Refs [4-7]. Matrices D, N, Hand R are assumed to be known
and related to a sectional behaviour involving ms plastic modes described in terms of the
vectors

(26)

(27)
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The ms plastic modes of the cross-section are usually related to the yielding of certain
layers of the beam.

5. A STATICAL METHOD FOR PLANAR FRAMES

In the previous sections only the time domain has been discretized. To develop numeri
cal methods the spatial functions must be represented or otherwise approximated, and this
is usually done by means of a discretization of the structure.

The frame V is discretized in ne beam elements Vi, of length 2/ i
, where a dimensionless

variable 1], varying from -1 to 1, is defined to substitute x.
We prefer to base the development of the method on the former among the two

equivalent statical principles, expressions (16) and (19), because it allows us to discuss the
consequences of the approximation assumptions on the plastic admissibility constraint. The
use of the latter statical formulation leads, in a simpler way, to the same quadratic program
obtained in this section.

With reference to the statical formulation in finite increments given by expression (16),
we consider the following sections: (i) the equilibrium constraint; (ii) the objective function;
(iii) the plastic admissibility constraint; (iv) the discrete optimization problem; and (v) the
selection of functions for interpolation and averaging.

5.1. Equilibrium constraint
The field Q representing the generalized stress distribution in the frame fulfils the

equilibrium condition

(28)

if along any beam element i this distribution is

(29)

where

(30)

contains all the internal forces and moments needed to describe the generalized stress
distribution along the element

(31 )

with

(32)

and

(33)

with
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Table 1. Equilibrium matrices B" and gi

B" gi

X F\ M\ M2

g\ _c i s'/21' -s'/21' sil' Lpy(f/)h,(f/) df/

g~ _Si _ci(2I i ci/2l i
- c'l'f /y(f/)h I (f/) df/

g) 0 -I 0 0

g~ ci -si/21' si(2l' -cil'f /.(f/) df/+sil'f /y(f/)h 2(f/) df/

g\ s' ci(2l' -c'(2I' -s'l'f /x(f/) df/-cil
if/, (f/)h 2(f/) df/

g6 0 0 0

c' = cos 8', s' = sin 8i, h, = 0.5(1-f/), h 2 = 0.5(1 +f/).

The exact influence operator Y(,O that gives the local stress due to Qi, and the known
stress function Qi(rJ) due to the distributed load, imposes the correct equilibrium condition
along the element, and must not be understood as an approximate interpolation function.

Let vector Q contain the components of Qi for all elements in the frame, and the
Boolean matrix LQrepresent the incidence relation between these vectors, then

(36)

The stress vector for element i in the global coordinate frame

(37)

defined in Fig. 1, is related to the element stress vector Qi by the equilibrium condition

(38)

where the equilibrium matrix BIT and the global coordinate vector of equivalent stresses?
are depicted in Table 1.

The frame is subjected to distributed loads (Px,py), already considered, and con
centrated loads applied at joints of beam elements. Let these nodal forces be collected in a
vector pnod, and the Boolean matrix L~ represent the incidence relation between global
(displacement) degrees of freedom and element (displacement) degrees of freedom. Equi
librium for all frame joints in all unrestricted global directions reads

n.

L L:!gi = pnod.

i=l

Substitution of eqns (38) and (36) in the above equation leads to

(39)
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BTQ=P (40)

where

n,

B= L L~BiL~ (41)
i= I

and

n,

P = pnod+p P = - L L:!gt. (42)
i= 1

To summarize the results concerning the equilibrium of the frame we note that the set
S(L) of the stress distribution in equilibrium with a fixed load is a linear manifold. Any
stress field of this set is expressed as the sum of a linear combination of known functions,
the entries of the operator Y, with the coefficients being the non-independent components
of Q, and a fixed stress field, due to distributed loading and described by the function Qi.
In fact, combining eqns (29) and (36) we get

(43)

The vector Q is constrained to fulfil

(44)

The dimension ofthe linear subspace that generates S(L) is the number of independent
components of Q, equal to 3ne less the rank of matrix B (which does not contain lines
corresponding to constrained degrees of freedom of the structure, assumed to be correctly
supported to eliminate rigid motions).

5.2. The objective function
An appropriate approximation of the field i is chosen in the form

(45)

where .p(rJ) is the interpolation matrix and the vector Ai contains all interpolation coefficients
for element i. To simplify the selection of this interpolation it is assumed that all the
components of i, i.e. the plastic factors of the cross-section, are approximated by different
linear combinations of the same basic functions

(46)

Hence

(47)

where Is is the (msx ms) identity matrix. Then, there are nfms components in the vector Ai
related to element i.

The components of all Ai in the structure are collected in a single vector A, ofdimension
equal to nenfm s • These vectors are related by the incidence Boolean matrix L~ such that

(48)

Substitution of eqns (43), (45) and (48) in functional (16), that can be written in the
form
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(49)

leads to the following expression of the objective function, when an immaterial constant is
omitted:

(50)

where

(51)

(52)

(53)

It is important to note that the compliance matrix for the structure [}-l is independent
of the interpolation, and also that the inversion of the small size matrix of element com
pliance (D~ - 1 allows the direct construction of the elastic matrix of the structure, i.e.

(54)

5.3. Plastic admissibility constraint
A stress distribution Qis admissible, for a certain multiplier field X, when it is verified

in any element i that

(55)

This condition cannot be guaranteed in general by imposing a finite set of inequalities
to constrain the coefficients collected in Q and .,t

We decide now to enforce this constraint in the average along the element, using the
same set of weighting functions for any sectional plastic mode tPj' We will show next that
when this set of weighting functions is selected coincident with the set of shape functions
fk of the plastic factor interpolation, the simplest form of the discretized problem derived
from the first statical formulation is obtained. Moreover, the resulting finite dimensional
problem coincides with the one obtained by using the same interpolation for Xin the
second statical formulation (which does not require any explicit discretization of the plastic
admissibility constraint). Hence, the use of interpolation functions for transforming the
plastic admissibility requirement into a finite number ofconstraints can be called the natural
procedure for expression (16) as suggested by the penalized formulation given by expression
(19).

According to the aforementioned assumptions, it is imposed in any element i that

(56)

Taking into account eqn (47), these constraints can be assembled in a single vector inequality
for element i
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(57)

where et>i is a vector of n1m, components with the meaning of element plastic modes.
Vectors et>i are now assembled as disjoint blocks of a vector et> for the whole structure

using the same incidence matrix L~. linking Ai and A, so that the admissibility condition
becomes

n,

et> = L L7et>; ~ O.
i= J

(58)

Substitution of eqns (57), (55), (45), (48) and (43) in the above equation results in

(59)

Matrix IHl is the same matrix obtained in the computation of the objective function.
This is the reason why we choose the same set of functions for interpolation and averaging
purposes.

The remaining matrices in the above equation are

(60)

(61)

(62)

5.4. The discrete optimization problem
According to the assumptions in Sections 5.2 and 5.3 the approximate discrete version

of the statical formulation is the following quadratic programming problem:

under the constraints

where

min O[ll-l~Q. ~Q+~q. ~Q+~IHILU· ~A)
6.Q.6.)'

(63)

(64)

(65)

(66)

This problem is formally dualized and dual variables are interpreted as discrete approxi
mations of kinematical fields. We state in this way

min [~[ll(B~u - N~A) . (B~u- N~A) - [ll~q. (B~u - N~A)
6.u.6.)'

under the constraint
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~A ~ O. (68)

This problem can be cast in the form

min [!K~U" ~U-Ku).~A·~u+ !KU~A'~A- (<I>, +~<D- NT[]l~ij)' ~A
Au. A).

under the constraint

(70)

where

(71)

(72)

(73)

The computation of these matrices can be performed at the element level because the
following relations hold (Lg-Lb is an identity if i = j and zero otherwise) :

n,

K= I:L;;KiL~; Ki=BrrDiBi
i=I

n,

Ku). = I: L;;K~).L~; K~). = BrrDiNi
i=l

n,

Ku = I: Lr;K~).LL KL = Hi+NrrDiNi
i~ )

n,

NT[]l~ij = I: Lr;N'TDi~qi
i~l

n,

BT[]l~ij = I: L;;B'TDi~qi.
i~ 1

(74)

(75)

(76)

(77)

(78)

Finally, elimination of ~u in the Kuhn-Tucker conditions of the latter formulation
(expression (69» leads to a linear complementarity problem for ~A and <I>

where

<I> = a-A~A (79)

(80)

(81)

(82)

This linear complementarity problem can be solved by a direct method, involving a
finite number of iterations, such as Lemke's algorithm[8], or iterative methods closely
related to the Gauss-Seidel algorithm.

SAS 24:2-8
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Then, displacement increments are computed by means of

(83)

and stresses as

~Q = []I(B~u- N~A)

Q = Qt+ Y(17)LQ~Q+Q(17).

Plastic admissibility along any element can be checked by computing

(84)

(85)

(86)

and using eqns (85) and (86) in eqn (55).
The main features of the proposed method are summarized below.

(1) The choice of the statical formulation allows us to take advantage of the knowledge
of the exact representation for all possible stress distributions.

(2) The continuous formulation given by expression (19) requires only the plastic
multiplier interpolation as the approximation necessary to transform the problem into a
finite dimensional one. On the other hand, a method developed on the basis ofa formulation
having admissibility constraints (expression (16» needs a further discretization to substitute
these constraints by a finite number of inequalities.

(3) The same discrete version of the problem is obtained either by simply substituting
an interpolation of Ain the second statical formulation, expression (19), or by using the same
functions in the first one, expression (16), to approximate A and also to average plastic
admissibility constraints. Note that the matrices []I, q, IHI, N, III and cI> ofeqns (51)-(53) and
(60)-(62) can also be obtained introducing the assumed approximation of i, eqn (45), into
the objective functional of the minimization problem of expression (19). This argument
justifies the choice ofweighted residuals associated with interpolation functions to discretize
the admissibility constraint. In this context, the development of the method as performed
in Sections 5.2 and 5.3 demonstrates the consequences of approximating i on the implicit
admissibility constraint of the statical formulation given in expression (19).

(4) Consider now the broader class of problems obtained from expression (16) when
the interpolation basis for plastic factors is not necessarily coincident with the set of
weighting functions used to discretize the admissibility constraint. This includes, for
instance, the case when the constraint is treated by the collocation method, i.e. Dirac
functions are used as weights, while bounded functions are chosen to approximate plastic
factors. These quadratic programs have two different hardening matrices, one in the objec
tive function and another one in the constraint. Therefore, these problems are more complex
than the one obtained in previous sections. In this sense, the simplest discretization of the
static formulation is given by the proposed method.

5.5. The selection offunctions for interpolation and constraint averaging
The set of functions fk defining the operator t/I must have two different properties. On

one side these functions should be suitable to represent plastic factor fields expected to
occur in a beam, and on the other side they must be able to detect positive values of the
plastic mode~4> j along the beam.

Fields A belonging to the domain of the considered optimization problem are not
necessarily pon-negative functions. That is because in the statical formulation adopted the
inequality A~ 0 'if 17 is an optimality condition rather than a primal constraint. Anyway, we
can work only with non-negative functions because that is the case for the exact solution.
Note that, for any kind of interpolation shapes, the coefficients ~l are non-negative in the
solution. In particular, if the interpolation is chosen piecewise linear with positive basic
functions, as in L2 to L5 of Fig. 2, then the non-negativity of coefficients implies the same
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Fig. 2. Functions h for interpolation of plastic factors along the beam.
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condition for any value of the function i. This situation is not reached if polynomials of
degree greater than one are used.

For the purpose of weighting the yielding functions it may be convenient to use Dirac
functions bk in points '1k (k = 1, ... ,11/). Thus, the plastic admissibility condition is strictly
enforced in the set of n/ selected points 11k. As interpolation bases, these functions produce
a model for the beam made of rigid bars and plastic hinges.

When positive functions having one main peak value (resembling Delta functions) are
used for averaging plastic modes, the plastic admissibility condition is approximately
enforced in the vicinity of the coordinates of these peaks.

If a beam element has no distributed load, and he are selected as the positive basic
functions of piecewise linear interpolation, then ¢ j is also piecewise linear with coincident
peaks. In this case it is sufficient to control ¢ j at these singular points to enforce admissibility.

According to the previous discussion some appropriate finite elements, called L2, L3,
L4 and L5, are defined in Fig. 2. The interpolation Q3 is included for comparison with the
results in Refs [4,7].

6. KINEMATICAL APPROACHES FOR PLANE FRAMES

Spatial discretizations of the kinematical formulation are briefly presented in what
follows in order to compare them with the proposed statical method.

By means of a finite element discretization of the frame the kinematical fields are
approximated in each element i as

(87)

(88)

where ui and u are element and global vectors of displacement interpolation parameters,
respectively.

Substitution of these approximations in the kinematical formulation for finite
increments (expression (14», leads to the following optimization problem for discrete
variables liu and liA.:

min BKliu . liu - Ku1 liA. . liu+ ~K11liA. . liA. - cI>I • liA. - liP . liu]
6u,61

under the constraint (which substitutes Iii ~ 0 VX E v~

(89)
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~A ~ 0 (90)

where

n,

K= LL'IKiLi K i
= 1. flBliDflBi d V (91)u u

i= 1 V'

n,

K L LIiKi L i K~ = lflBllDNtP.l dV (92)ule= u ule.l
i= I v'

with

flBi(Tf) = 9)(tPu(Tf)) (93)

and

n,

K "LIiKi Li
.l1e=f.J.l Ie.l Ie

i=l

(94)

(95)

(96)

The equivalent load vector P has the same definition as in eqns (42) of the previous
section.

To summarize the kinematical discrete formulations we note that these methods are
characterized by a particular (FEM) interpolation ofdisplacements and plastic factors, and
they involve the solution of a quadratic problem similar to that appearing in the proposed
static method.

In contrast to the statical method where stresses are exactly represented, the kinematical
approach requires not only the approximation of plastic multipliers but the interpolation
of displacements as well. This advantage of the force method is a consequence of the fact
that beam elements are statically determinate, i.e. internal forces are uniquely obtained
from equilibrium. This statical determination also implies that any arbitrary plastic strain
distribution is kinematically admissible, i.e. for any i there is a usuch that

(97)

When interpolations of uand i are independently chosen, fictitious redundancies are
sometimes introduced in the finite element behaviour. Independent interpolations for uand
i are in accordance with the kinematical principle but fictitious redundancy is commonly
associated with poor efficiency of the finite element.

The possibility ofconstructing "compatible finite elements", i.e. a pair ofinterpolation
operators (tPu,tPle) such that for any Ai there is a ui that holds eqn (97), is investigated by
Corradi and Maier[4-7].

7. EXAMPLES

Several combinations of longitudinal approximations, shown in Fig. 2, with cross
sectional models are tested in simple examples in order to demonstrate the behaviour of
the different finite elements defined in this way. Although we have presented the general
method for frames under combined bending moment and axial force, the examples treated
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Fig. 3. Load--<iisplacement curves for the cantilever beam with the elastic-perfectly plastic relation
for moment and curvature: S, statical method; K, kinematical method with cubic displacement

interpolation; L2, L3, Q3, plastic factor interpolations shown in Fig. 2 (if = .J(3/5) for Q3).
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only involve bending, so that we shall omit matrix components corresponding to axial
forces (i.e. Q = [M] and q= [IC]).

The first case is a cantilever beam, loaded at the free end, with elastic-perfectly plastic
cross-sectional behaviour in terms of the moment-eurvature relation, Le.

D = [EI] N = [1 -1] (98)

The results in Fig. 3 show that the statical approach approximates better the exact
curve. The fictitious redundancy only appears in the kinematical method, resulting in
contained yielding before collapse.

The second example is the same cantilever beam with cross-sectional behaviour corre
sponding to linear kinematic hardening in terms of the moment-eurvature relation, i.e.

-IJI . (99)

The exact solution for the free end displacement is

(100)

(101)

where p is the dimensionless load LPIMy.

The results in Fig. 4 (for (X = 1/3) demonstrate the convergence of the approximation
when the number of interpolation parameters increases.

In the following two examples the beam has rectangular cross-section and it is made
of elastic-plastic homogeneous material. Several approximations of the sectional behaviour
are derived from the interpolation functions in Fig. 5 by using some equations derived in
the Appendix. These functions are the positive piecewise linear bases (i.e. same as in
Fig. 2) written in terms of bending plastic modes.

The third example is the cantilever beam with homogeneous rectangular cross-section.
The exact tip displacement is
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(102)for 3~ p ~ 1( )
_ L 2M y 4[1O-3J(3(1-p)) o (P+2))

u L - EI 81p2

where EI = Ebh 3/12 is the flexural rigidity, My = bh 2(Jy/4 is the limit bending moment and
p = LP/M y is the dimensionless load parameter. This curve is shown in Fig. 6 together with
some approximations obtained by combining longitudinal and transversal interpolations
of plastic multipliers in the proposed statical method.
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The last example is the hyperstatic beam in Fig. 7 with rectangular cross-section of
elastic-perfectly plastic material. The exact elastic limit is

8 My
p=-

3 L
(103)

and the limit load is

My
P =4

L' (104)

Results obtained with the statical method are shown in Fig. 7.
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Fig. 7. Load---{}isplacement curves for a beam with both ends fixed and having rectangular section
of elastic-perfectly plastic material: a, S4 «(\ = 0.1; (2 = 0.3) and L4 (Pi = 0.8); b, S6 «(, = 0.1 ;

(2 = 0.3) and L5 (Pi = 0.9).
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8. CONCLUDING REMARKS

A statical method for the analysis of elastic-plastic planar frames is developed and
compared with kinematical approaches. For the case of plane frames there is a primary
argument to prefer the force formulation, namely the possibility of representing all possible
stress fields using a finite number of parameters. This is due to the fact that beams are
statically determinate in terms of stress resultants. Consequently, there is only one field to
be approximated, Le. the plastic multiplier distribution.

The interpolation of plastic factors has been discussed with reference to the induced
discretization of the plastic admissibility constraint. It has been shown that the simplest
discretization is derived from the augmented functional containing this constraint as a
penalty term. We have also interpreted this discretization and used this to choose proper
interpolation bases.

The numerical applications shown are intended to be test examples of the proposed
finite elements for frames.

In the application of the force method to other types of structures, the main question
is how to represent all possible exact stress distributions preserving the degree of statical
redundancy in the element of the continuum discretization. If this condition is reached, all
the advantages of the statical formulation, explored here for the case of frames, will be
apparent.
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APPENDIX

A procedure to generate approximate models for the plastic behaviour of a beam cross-section in terms of
piecewise linear yielding functions of a finite number of variables is given. The approximate model is based on:
(i) the Euler-Bernoulli assumption; (ii) a plastic factor interpolation in the section; and (iii) substitution of local
equations by similar conditions on weighted average values. The static variables adopted are the axial force and
the bending moment, and the corresponding kinematical variables are the longitudinal mean deformation and
the curvature deformation. The number and interpretation of discrete variables for plastic factor and yielding
function depends on the interpolation adopted.

The cross-section is assumed homogeneous and elastic-perfectly plastic with elastic modulus E and (tension
compression) plastic limit (T y. At any point of the section, axial strain E,,, stress (TX> plastic factor A.x and yielding
function tP x are related by

where

(Tx = E(Ex-nAx) (AI)

(A2)

Equilibrium requires that

n [I -I]

Ax = [A.+ A._]T

(A3)

(A4)
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Q = 1bTU, dA

where
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(AS)

Q = [F M)T

The Euler-Bernoulli assumption is now written as

An interpolation operator 1{t, is defined so that

b= [I -y). (A6)

(A7)

Consequently, stresses and plastic functions vary in the section according to

(J, = Ebq-En1{t)

4>, = EnTbq-EnTn1{t)-r.

Replacing eqn (A8) in the equilibrium condition we get

Q= Erqqq-ErqA

where

r qq =1bTb dA = diag [A; I)

Equation (AlO) can be cast in the form

Q = D(q-Ni)

for

D = Erqq = diag [EA; EI)

N= r~lrql.

Let us substitute the local plastic conditions

4>, ~ 0 Vy

4>,'~' = 0 'tIy

by similar equations for weighted average values. If eqn (AI7) is replaced by

then the corresponding discrete equation is

where

(A8)

(A9)

(AlO)

(AIl)

(AI2)

(Al3)

(AI4)

(AI5)

(AI6)

(AI7)

(AI8)

(AI9)

(A20)

and we conclude that the local condition, eqn (AI6), should be weighted by the transpose interpolation operator
to maintain the same structure of equations that describes the plastic behaviour of a work hardening material
(see eqns (5)-(9». Hence the admissibility condition, eqn (AI6), is replaced by the following vectorial inequality:

(A21)

If each interpolation function for plastic factors has a single peak value and decays away from this point,
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then the components of the plastic vector tjJ are related with the yielding of layers of the beam around the peak
coordinates.

We can find the remaining plastic relations by replacing eqn (A9) in eqn (A20). In this way we get

(A22)

with

Using eqn (AW) in eqn (A22) gives

where

tjJ == wQ-Hi-R

(A23)

(A24)

(A25)

(A26)

The expressions obtained for N, and R coincides with those given by Corradi[7] although they were developed
here from different considerations. It is also possible to use transversal interpolation together with the longitudinal
approximation in the primary continuum formulation, but this has not been done in this paper to avoid
complicated notation.


